Технико-экономическое обоснование
ТЭО ЛСТК
Это комплект расчетно-аналитических документов, содержащих
основные технические решения, расчетно-сметные, оценочные и
другие показатели, позволяющие рассматривать целесообразность
и эффективность инвестиционного проекта.

Технико-экономическое обоснование малоэтажного строительства по технологии ЛСТК

На Западе хорошо известно понятие Light Gauge Steel Framing что в переводе на русский может означать Легкие Стальные Тонкостенные Конструкции (ЛСТК). Технология Легких Стальных Конструкций ЛСТК - каркасная технология строительства на основе систем, в несущих конструкциях которых используются легкие стальные оцинкованные профили, в том числе профиля толщиной до двух мм. Из этих конструкций возводят жилые одно- и двухэтажные здания, магазины, гаражи, общественные здания (отели, медицинские и спортивные учреждения). История строительства из ЛСТК в Европе, США и Канаде насчитывает уже более 50-ти лет. При этом за рубежом накоплен огромный опыт проектирования, финансирования, строительства и эксплуатации зданий из ЛСТК. Постепенно ЛСТК входят и на рынок России, тем более, что в нашей стране огромная история металлостроительства, большой опыт проектирования и строительства из металла.

На Западе эту технологию строительства загородных домов применяют более 50 лет. Так, в Швеции и Японии доля ИЖС, построенных из ЛСТК, составляет 15%, в США - 6%, в Великобритании - 3%. В России эта доля составляет (пока) 0,5%.

Строительство дома из металлокаркаса - сегодня это наиболее перспективное направление в малоэтажном строительстве. Разнообразие возможностей архитектурно-планировочных решений, высокие эксплуатационные качества металлоконструкций, простота при сборке и ремонтопригодность, экономичность и экологичность делают строительство из металлических конструкций (ЛСТК) наиболее предпочтительным.

Технология строительства дома из ЛСТК (металлокаркаса) позволяет быстро и эффективно строить здания самого различного назначения: это может быть жилой многоквартирный дом, частный особняк, офисно-складское здание, магазин, а особенно актуальна при реконструкции кровли и строительстве мансард.

Применение этих конструкций вместо традиционных — из железобетона, кирпича, дерева или стального проката — дает значительный экономический эффект в малоэтажном строительстве благодаря снижению нагрузок от собственного веса и сейсмических нагрузок, уменьшению транспортных расходов и трудозатрат на монтаже, сокращению сроков строительства без применения строительных машин.

Наружные стены зданий состоят из:

  • металлических оцинкованных профилей, изготовленных из полосы тонколистовой стали толщиной 0,7 - 2,5 мм, соединенных между собой винтам и саморезами в плоскости панели. Вертикальные стойки, горизонтальные лежни и соединительные элементы создают каркас здания;
  • эффективного утеплителя (например - минераловатные базальтовые плиты), плотно уложенного между стойками. Утеплитель должен быть негорючий, экологически безопасный и обеспечивать высокие теплофизические параметры стены;
  • гипсокартонных листов обшивки с внутренней и наружной стороны стены (возможно применение ЦСП, ОСБ и других материалов);
  • пароизоляционных и диффузионных пленок;
  • наружной облицовки, выполненной по принципу "вентилируемого фасада", воздушный зазор обеспечивает проветривание утеплителя.

Основой конструктивной системы зданий из ЛСТК является несущий каркас из гнутых профилей швеллерного, С-образного или Z-образного сечений повышенной жесткости из стали толщиной не менее 1 мм.

Для элементов каркаса наружных стен предусмотрено применение профилей стенкой исключающих образование мостиков холода. Утеплитель в наружных стенах располагают в пределах высоты сечения элементов каркаса и защищают специальными пленками с обеих сторон. Наружную облицовку стен выполняют по принципу вентилируемого фасада.

Для внутренней облицовки стен, перегородок и перекрытий обычно используют два-три слоя гипсокартонных листов в зависимости от требований огнестойкости.

Высота этажа в зданиях может достигать 4,2 м. Междуэтажные перекрытия состоят из тонкостенных оцинкованных балок из гнутых профилей и профилированного стального настила с дополнительными элементами, обеспечивающими индекс звукоизоляции от воздушного шума. Оптимальный свободный пролет конструкций междуэтажных перекрытий составляет до 4,8 м.

Несущие конструкции покрытий пролетом до 15 м выполняют в виде ферм или стропил из тонкостенных оцинкованных гнутых профилей. По металлической обрешетке покрытия укладывают кровельные материалы.

Стальной каркас чердачного перекрытия монтируют также из профилей с стенкой,   исключающих   образование   мостиков   холода.   Утеплитель размещают в пределах высоты сечения элементов каркаса и защищают специальными пленками.

Масса любого монтажного элемента конструкций здания не превышает 100 кг, что позволяет выполнять монтаж без применения грузоподъемной техники в короткие сроки. Бригада из 3 - 4 человек может собрать каркас дома общей площадью 150-200 мм2 за 15-20 дней.

Элементы конструкций из стали толщиной до 2 мм соединяют с помощью самонарезающих винтов диаметром 4,8 - 6,3 мм. Соединения элементов из стали толщиной более 2 мм целесообразно выполнять на обычных болтах. Применять сварку при изготовлении и монтаже ЛСТК не рекомендуется.

Конструктивные решения зданий из ЛСТК позволяют использовать поэлементный монтаж на площадке, сборку дома из укрупненных элементов или объемных блоков заводского изготовления.

Конструкции наружных стен позволяют применять разнообразные фасадные решения. В процессе эксплуатации здания возможна быстрая замена наружной облицовки, что изменяет архитектурный облик здания. Каркас одноэтажного дома без внутренних опор с пролетом до 15м дает возможность варьировать объемно-планировочные решения.

Технология строительства зданий из ЛСТК позволяет широко использовать потенциал малого и среднего бизнеса, создать конкурентную среду на рынке строительных технологий для малоэтажного строительства.

Строительство с применением ЛСТК является разновидностью "сухого способа строительства". Все процессы на строительной площадке - сборочные, все соединения выполняют с помощью самонарезающих винтов в соответствии с детально разработанными чертежами и инструкциями. Новая технология предполагает всесезонное строительство в любых климатических условиях, т. е. дает возможность монтировать конструкции и в зимний период.

Преимущества применения ЛСТК в малоэтажном жилищном строительстве способствуют эффективному выполнению задач проекта "Доступное и комфортное жилье - гражданам России" - строить надежные дома высокого качества.

Преимущества:

  • Нет необходимости устраивать фундаменты глубиной 1,5-2,0 м. Вполне по- дойдет фундамент мелкого заложения (монолитная плита) или фундамент на буронабивных сваях. Для такой строительной системы уместно применение систем "теплый пол" в качестве системы обогрева помещений.
  • Благодаря легкости каждого элемента, точному размеру, маркировке и продуманным чертежам КМД, сборка каркаса на строительной площадке осуществляется небольшой бригадой в короткие сроки. Бригада из 3-4-х человек может собрать полностью каркас дома площадью 150-200 кв. метров за 2-3 недели. Для сборки всех элементов здания необходимо иметь только электродрель (шуруповерт). Все элементы соединяются при помощи самосверлящих шурупов.
  • Экономия на этапе монтажа здания - полное отсутствие кранов или каких- либо грузоподъемных механизмов на всем этапе установки каркасов стен, кровли, перегородок. Но этот фактор может стать первым по значимости, если место строительства удалено от дорог, или при экстремальной ситуации нужно быстро и качественно собрать "коробку" в минимальные сроки.
  • Легкие эффективные стены с системой "вентилируемого зазора". После ужесточения требований СНиПа по теплотехнике применение данной технологии позволяет реально сэкономить на стоимости строительных материалов для ограждающих конструкций. Так, например, стеновая панель толщиной 150 мм может заменить кирпичную стену толщиной 1000 мм.
  • Конструкция стен из ЛСТК позволяет устроить из ограждающих конструкций "термос", который в закрытом состоянии может хранить тепло до 2-3 суток, не требуя дополнительного отопления.
  • Еще один фактор экономии, который вряд ли можно найти в других строительных системах - многовариантность отделки фасадов (или систем внешней отделки стен здания). Все фасадные решения в технологии ЛСТК базируются на принципе "вентилируемого фасада" - между "сэндвичем" наружной стены и внешним "экраном" существует воздушный зазор, который дает возможность проветривать утеплитель и создает прекрасные возможности для санации воздуха изнутри помещений. Экономия при этом в том, что нет необходимости использовать дорогие строительные материалы для отделки - вполне подойдет вариант деревянной вагонки в сочетании с декоративной кирпичной кладкой или виниловый сайдинг в комбинации с элементами каменной стены.
  • Абсолютная точность внутренних стен.
  • Свободная планировка внутреннего пространства дома дает возможность расположить помещения так, чтобы уменьшить теплопотери и сократить затраты на энергоносители.
  • Экономия времени на каждом этапе строительства.
  • Долговечность и надежность. Металлоконструкции отличаются высокой надежностью и долговечностью, воплощая в строительстве лучшие качества металла. Надежность и эластичность ЛСТК позволяют создавать безопасные конструкции.
  • Экологичность. Сталь – экологически чистый материал, не выделяющий запахов и вредных веществ в атмосферу. При правильной эксплуатации стальные конструкции безопасны для здоровья и окружающей среды.
  • Высокая сейсмоустойчивость (до 9 баллов).
  • Отсутствие кустарного производства.

Недостатки:

  • Панельно-каркасный дом из-за особенностей своей конструкции герметичен. Поэтому на этапе проектирования должна быть максимально продумана система вентиляции. Лучше сделать вентилируемые фасад и кровлю, использовать так называемые дышащие окна, хорошо вентилируемые камины, предусмотреть вен- тиляционные штольни, поставить систему климат-контроля. Все эти мероприятия увеличат затраты, но и повысят стоимость самого жилья.
  • После возведения стен из OSB панелей нужно как можно скорее закрыть кровлю и заняться фасадной отделкой. Прямое попадание влаги на стены очень нежелательно: примерно через три месяца плиты начнут темнеть от осадков.
  • В металлических каркасах главное внимание необходимо уделить антикоррозийной обработке металла и контуру утепления, чтобы исключить возникновение коррозии и «мостиков холода».
  • Теплоизолирующая эффективность профиля металлической конструкции наружной стены зависит не только от типа изоляционного материала и способа его укладки, но и от наличия хорошей ветрозащиты и паронепроницаемого барьера. Как правило, он состоит из устойчивой к старению влагозащитной полиэтиленовой пленки толщиной 0,1–0,2 мм. Паробарьер необходимо располагать как можно ближе к теплой стороне стены. Если внутренняя часть наружной стены состоит из двух слоев гипсовых листов, то пленку рекомендуется располагать между этими листами. Если применяется только один слой гипсовых листов, то паронепроницаемый барьер монтируют между профилями металлокаркаса и гипсовым листом. Соединение двух пленок должно иметь перехлест как минимум 200 мм. Склеивание краев пленки клейкой лентой не рекомендуется, так как ее устойчивость к старению невозможно предсказать, а клеящий слой может разрушать некоторые виды пленок. Для минимизации количества соединений рекомендуется использование большеформатной пленки. По возможности следует избегать проделывания отверстий в полиэтиленовой пленке для подведения коммуникаций через наружные стены.
  • Требуется высокий уровень квалификации рабочих, так как любая ошибка при сборке каркаса впоследствии может существенно повлиять на качественные характеристики дома.

ТЕХНОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ ДЛЯ МАЛОЭТАЖНОГО СТРОИТЕЛЬСТВА

Материал

Плотность Кг/м3

Коэф-нт тепло-проводно- сти Вт/(м*0C)

Тепло- защита

Необхо- димая толщина стены для цен- трального региона

Эксплуата- ционная влажность

Усадка, м/мм

Масса 1 м2

стены, кг

Морозо- устой- чивость, кол-во циклов

Звукоизо- ляция, дБА (при толщине стены
380мм)

Продол- житель- ность строитель- ства, мес.

Бетон

2400

1,51

н/д

1,44

 

2

3456

60

н/д

н/д

Керамзито- бетон

1800

0,21-0,66

40%

0,9-1,5

5-7%

1,1-2,4

1134

50

55

4-6 мес.

Силикатный кирпич

 

1800

 

0,81-0,87

 

18%

 

2,5

 

6-8%

только фунда- мент

 

1314

 

30

 

6,5

8-12 мес. (сильная усадка фундамента)

Пенобетон

600

0,21

38%

0,63

12%

2--3

160

25-35

55

4-6 мес. (суще- ственная усадка)

Газобетон

400-500

0,09-0,14

40%

0,64-0,8

6-8%

0,3

250-

360

25

55

4-6 мес. (суще- ственная усадка)

Брус

500

0,18

34%

0,52-0,56

10-15%

10

220

25

65

4--6 мес. (кругло- годично, (но отделывать нельзя из-за сильной усадки)

Деревянный каркас

700-800

0,05

108%

0,2

12-18%

-

70-100

40

70

2-4 мес. (усадка практически отсутствует)

ЛСТК

200-500

0,045

115%

0,15

4-8%

-

50

50

60

2--4 (круглого- дично, усадка отсутствует)

Таблица 1. Технологические характеристики строительных материалов для малоэтажного строительства

Исходя из представленных выше характеристик, технология ЛСТК выигрывает у других технологий строительства по большинству параметров.

ПЛОТНОСТЬ СТРОИТЕЛЬНОГО МАТЕРИАЛА

Различные строительные материалы имеют разные коэффициенты теплопроводности. На них влияют различные факторы, в частности плотность и влажность материала. Плотный материал имеет больший коэффициент теплопроводности по сравнению с пористым, то есть, для поддержания нормальной температуры в доме требуется большая толщина стен при использовании более плотного строительного материала.

Наиболее плотным строительным материалом является железобетон – 2 400 кг/м3, следом идет силикатный кирпич и керамзитобетон – 1 800 кг/м3. Наиболее легкими являются ЛСТК – 350 кг/м3.

teo-diagrams-1.gif 

Диаграмма 1. Плотность строительных материалов

 

ТЕПЛОПРОВОДНОСТЬ СТРОИТЕЛЬНОГО МАТЕРИАЛА

Коэффициент теплопроводности (Вт/(м·°С)), является одной из основных тепловых характеристик материала. Коэффициент теплопроводности материала выражает меру проводимости теплоты материалом, численно равную тепловому потоку (Вт), проходящему сквозь 1 м2 площади, перпендикулярной направлению потока, при градиенте температуры, равном 1 °С/м. Чем больше значение коэффициента теплопроводности тем интенсивнее в материале процесс теплопроводности и значительнее тепловой поток. Поэтому теплоизоляционными материалами принято считать материалы с коэффициентом теплопроводности менее 0,3 Вт/(м·°С).

Таким образом, чем выше коэффициент теплопроводности строительного материала, тем быстрее дом будет отдавать тепло, следовательно, тем больше составят затраты на отопление.

Наибольшим коэффициентом теплопроводности обладает бетон – 1,51 Вт/(м0С), наименьшим – ЛСТК – 0,045 Вт/(м0С).

teo-diagrams-2.gif 

Диаграмма 2. Теплопроводность строительных материалов

 

ТОЛЩИНА СТЕН

Данный показатель характеризует необходимую толщину стен для поддержания комфортной температуры в доме без учета утепления для Центрального региона России. Наибольшая толщина стен приходится на силикатный кирпич – 2,5 метра, наименьшая – на ЛСТК – 0,15 метров.

teo-diagrams-3.gif 

Диаграмма 3. Необходимая толщина стен без учета утеплителя для поддержания комфортной температуры в доме для Центрального региона, м

 

МОРОЗОСТОЙКОСТЬ МАТЕРИАЛА

Морозостойкость - это условный срок эксплуатации без видимых повреждений и значительных ухудшений характеристик материала.

Общепринятый стандарт с разработанной единой методикой испытаний материалов для того, чтобы была возможность оценивать и сравнивать срок эксплуатации материалов. Чем больше морозостойкость материала, тем он дольше служит в реальных климатических условиях. Условно это количество циклов, которые выдерживает материал в климатической камере без разрушения. Материал при испытании насыщается водой, замораживается, затем размораживается, при этом облучается УФ- и ИК-лампами, ускоренно моделируя срок службы материала. По состоянию материала оценивается его морозостойкость, которая указывается в количестве циклов.

Наименьшей морозостойкостью обладает брус и газобетон – 25 циклов, наибольшей – керамзитобетон и ЛСТК – 50 циклов.

teo-diagrams-4.gif

Диаграмма 4. Морозостойкость материала, количество циклов

 

ШУМОИЗОЛЯЦИОННЫЕ СВОЙСТВА МАТЕРИАЛА

Величина дБА — уровень звукового давления, измеренный в дБ при помощи шумомера, содержащего корректирующую цепочку, снижающую чувствительность устройства на низких и очень высоких частотах

Наименьшей звукоизоляцией обладает кирпич – 6,5 дБА, наибольшей - деревянный каркас (строительство по канадской технологии) – 70 дБА. ЛСТК демонстрирует уровень звукоизоляции в 60 дБА.

teo-diagrams-5.gif 

Диаграмма 5. Шумоизоляционные свойства материала, дБА

 

СРЕДНЯЯ ПРОДОЛЖИТЕЛЬНОСТЬ СТРОИТЕЛЬСТВА

Средняя продолжительность строительства дома «под ключ» варьируется от 2-3 до 10- 12 месяцев. Наименьшим сроком строительства характеризуются здания из ЛСТК и на основе деревянного каркаса – около 3 месяцев, наибольшим сроком строительства - кирпичные дома – около 10 месяцев.

teo-diagrams-6.gif 

Диаграмма 6. Средняя продолжительность строительства дома «под ключ», месяцев

СТОИМОСТЬ И СРОКИ СТРОИТЕЛЬСТВА

В таблице ниже представлена средняя стоимость строительства квадратного метра дома «под ключ» и без отделки по видам технологий.

 

Монолитное

Каркасно-панельное

Брус

ЛСТК

Eurobau

27 т.р. За кв. м – без отделки

 

 

 

ИНСИ

 

от 17,5 до 20 т.р. за кв. м («под ключ») из них: фундамент - 3,5 т.р. За кв. м материалы - 8,75 т.р. за кв. м

монтаж - 4 т.р. За кв. м

 

 

Полар Сип

от 25 до 34 т.р. За кв. м «под ключ»

17 т.р. За кв м

от 20 до 25 т.р. За кв. м «под ключ»

 

Мечтаево

 

11 т.р. За кв. м – без отделки

 

 

"РНР" домостроение

 

от 18 до 30 т.р. за кв. м («под ключ»)

из них: фундамент - от 3,5 до 4 т.р. За кв. м материалы - 10 т.р. за кв. м

 

 

Солнечный дом

20 т.р. За кв. м «под ключ»

16 т.р. За кв. м «под ключ»

25 тр.р за кв. м «под ключ»

 

Дачный сезон

 

от 10 до 13 т.р.За кв. м - без отделки., 16,4 - "под ключ" с отделкой

 

 

Bravo villa

Без отделки - от 15 до 25 т.р. За кв. м

(«под ключ»)

Отделка и инженирия - 4-15 т.р. За кв. м

 

 

 

Талдом Профиль

 

 

 

18 т.р. За кв. м «под ключ»

Строительные.тех- нологии_Royal_Russia.

 

 

 

19 т.р. За кв.м «под ключ»

Маки

 

из финского бруса - 50 т.р. За кв. м («под ключ»)

из отечеств. Бруса - 30-35 т.р. За кв.м («под ключ»)

 

Экопан

 

от 18 до 22 т.р. За кв. м («под ключ»)

из них фундамент и материалы от 12 т.р. За кв. м

 

 

Средняя стоимость (с внутренней отделкой)

28,5

19

32

18,5

Таблица 2. Стоимость строительства квадратного метра дома «под ключ» по видам технологий

Таким образом, наиболее дешевым является строительство по технологии ЛСТК – 18,5 тыс. руб. за кв.м «под ключ».

 

ВЫВОДЫ

В исследовании были выделены основные факторы, влияющие на выбор строительных материалов. Оценка строительных материалов была проведена по основным параметрам. Для оценки использовалась пятибалльная система, согласно которой, 5 –высшая оценка, 1 – низшая оценка. Таким образом, исходя из данных оценки факторов, наибольшее количество баллов набрала технология ЛСТК – 67 баллов, наименьшее – силикатный кирпич – 37 баллов.

 

Силикат- ный кирпич

Керами- ческий кирпич

Пено- бетон

Газо- бетон

Монолит

Керамзито- бетон

Брус

Деревян- ный каркас

ЛСТК

Звукоизоляция (5 – высокая, 1 – низкая)

5

5

5

5

5

4

5

3

4

Надежность (5 – высокая, 1 – низкая)

5

5

3

3

4

3

4

4

5

Теплоизоляционные свойства (5 – высокие, 1 – низкие)

1

2

4

4

4

3

5

5

5

Влагопоглощение (5 – высокое, 1 – низкое)

2

3

3

2

3

3

5

5

3

Морозостойкость (5 –высокая, 1 – низкая)

1

2

2

3

4

5

3

3

5

Стоимость строительства (5-низкая, 1- вы- сокая)

1

2

4

4

2

4

3

3

5

Удобство транспортировки (5 – высокий уровень, 1 – низкий)

1

1

3

3

1

4

2

3

3

Необходимая толщина стены для централь- ного региона (без утеплителя) (5 - наимень- шая толщина, 1 – наибольшая)

1

1

3

3

4

3

4

4

5

Простота строительных работ

1

1

5

5

2

3

2

3

4

Глубина фундамента (1- большая, 5 - ма- ленькая)

1

1

2

2

4

1

3

4

5

Срок службы при постоянном проживании (5 – длительный, 1 – короткий)

5

5

4

4

5

4

4

4

4

Экологичность (5 – высокая, 1 – низкая)

5

5

5

2

2

4

5

3

4

Пожаробезопасность (5-высокая, 1 – низкая)

5

5

4

4

5

4

2

2

5

Усадка (5- слабая, 1- сильная)

2

2

2

4

4

4

3

4

5

Длительность строительства (5 – короткие сроки, 1 – длительное строительство)

1

1

4

4

2

3

3

4

5

Итого баллов

37

41

53

52

51

52

53

54

67

Таблица 3. Факторная оценка строительных материалов